Page 1 sur 1

Application Bi-Lipschitzian

MessagePosté: Lundi 01 Mai 2017, 09:55
par mokata
Une fonction $f: U_1, \left\| \cdot \right\|_1 \rightarrow  U_2, \left\| \cdot \right\|_2 $ est Lipschitzienne s'il existe une constante $K>0$ telle que $\forall a,b\in U_1$.

$$ \left\| f(a) - f(b) \right\|_2 \le K  \left\| a - b \right\|_1 $$

Je veux trouver une fonction $ f $ entre le cube et la boule unité de $\mathbb R^d$:

$$f : Q=B(0,1),\left \| \cdot \right \|_\infty\rightarrow  B=B(0,1),\left \| \cdot \right \|_2, $$

telle que : $f$ soit bijective, lipschitzienne et $f^{-1}$ lipschitzienne.

Avez-vous une idée ou une référence à propos de ce problème ?
J'apprécierais toute votre aide et vos réponses.