Une suite simple, mais la suite ne l'est peut être pas ...

Discussions générales concernant les mathématiques.
[ce forum est modéré par les modérateurs globaux du site]
Règles du forum
Merci d'éviter le style SMS dans vos messages et de penser à utiliser la fonction Recherche avant de poster un message. Pour joindre des fichiers à vos messages, consulter ce sujet.
> Penser à utiliser le mode LaTeX (voir ici) afin de rendre vos formules plus lisibles.
> Pour obtenir de l'aide sur un exercice ou un problème, consulter cette section. (ce forum est destiné aux discussions plutôt théoriques)

Une suite simple, mais la suite ne l'est peut être pas ...

Messagepar Nightmare » Mardi 14 Février 2006, 13:07

Bonjour à tous :bye1:

Voici une question/énigme que j'avais déjà posté sur un autre forum et dont la réponse est toujours en suspent (je ne l'ai pas moi même ...).
Je vous la soumet, peut être trouverez-vous une solution :)

Vous devez surement tous connaitre la suite logique :

Code: Tout sélectionner
1
11
21
1211
111221
312211
13112221


Chaque ligne est déduite de la précédente par simple jeux de prononciation :

Ligne 3 : 21
En lisant chaque chiffre et le nombre de chiffre à la suite, on pourrait lire : Un 2 et un 1

On obtient ainsi la ligne 4 : 1211
Pareillement cette ligne peut se lire : Un 1, un 2 et deux 1

On obtient alors la ligne 5 : 111221
etc ...

Ma question n'est pas de compléter cette suite triviale (si c'était le cas, vous vous doutez bien que je n'aurais pas donné l'astuce ;)) mais est d'exploiter cette suite.

Voici la question : Peut-on trouver, pour tout n entier, le nombre de chiffres dont sera composée la n-iéme ligne ?

En fait on recherche une formule de réccurence liant la ligne n au nombre de chiffre $\rm U_{n}$

Nous avons réussi à démontrer que la suite ne pouvait pas contenir de 4 (je vous laisse réfléchir à cette démonstration) et alors conjecturé que la suite n'était pas monotone (à démontrer). Mais la réponse à la question reste encore loin ...

A vos crayons et merci de votre participation.

:)
Jord
Nightmare
Kilo-utilisateur
 
Messages: 141
Inscription: Dimanche 12 Juin 2005, 14:56
Localisation: Le perreux

Publicité

Messagepar MB » Mardi 14 Février 2006, 14:32

Bonjour Nightmare.

En ce qui concerne ta question : cette suite semble assez difficile a modéliser mathématiquement et la réponse à ta question risque d'être assez laborieuse.

Une chose semble évidente, c'est que $U_n$ est paire pour tout $n \geq 2$.

En ce qui concerne ta conjecture visant à dire que cette suite n'est pas monotone, moi je dirais plutôt qu'elle semble croissante. Tu dis également qu'il n'y a pas de 4 : c'est vrai mais on peut dire qu'il n'y a que des 1, 2 ou 3.

On remarque donc que les nombres vont par deux, et que les seuls couples possibles sont (et il semble assez clair que le coupe 33 ne peut pas apparaître) :

[center]$\begin{array}{|c|c|c|} \hline  11 & 21 & 31 \\ \hline  12 & 22 & 32 \\ \hline  13 & 23 & 33 \\ \hline \end{array}$[/center]

Il est également clair que chaque couple ne peut pas être suivi ou précédé d'un couple situé sur la même ligne que lui. En étudiant les différentes combinaisons possibles, on doit pouvoir obtenir la croissance de la suite.

Voilà pour ces quelques pistes. :detective:
Dernière édition par MB le Mardi 14 Février 2006, 23:17, édité 2 fois.
MB
Administrateur
 
Messages: 6891
Inscription: Samedi 28 Mai 2005, 13:23
Localisation: Créteil
Statut actuel: Actif et salarié | Enseignant

Messagepar nirosis » Mardi 14 Février 2006, 23:08

Salut!

Il paraît assez clair qu'il n'y a pas de 4.
Par l'absurde on doit pouvoir montrer que le petit jeu de prononciation tomberait à l'eau ou que l'on ne pourrait pas remonter à $U_0$.

Par contre, j'aurais dit qu'elle était croissante cette suite. Sinon il n'y a qu'a programmer un algo qui calcule les 10000000 premiers termes. Ca donnera une idée de ta conjecture. Si ça reste croissant, faudra peut-être essayer de montrer que ça l'est plutôt que le contraire...

En gros, comme on est en base 3 et il est possible de faire une fonction qui à un certain nombre en base 3, renvoie un autre nombre en base 3 (suivant des règles à déterminer). Tout ça me fait penser au domaine des langages et automates finalement, plus qu'à celui des suites numériques.
Dernière édition par nirosis le Mardi 14 Février 2006, 23:28, édité 1 fois.
nirosis
Administrateur
 
Messages: 1806
Inscription: Samedi 28 Mai 2005, 13:48
Localisation: Orsay, France
Statut actuel: Actif et salarié | Maître de conférence

Messagepar Nightmare » Mardi 14 Février 2006, 23:27

Bonsoir et merci à vous pour vos réponses.

Oui en effet la suite semble croissante avec Maple (je le sais depuis cet aprem d'où l'erreur dans ma conjecture).

Effectivement il me semble qu'arriver à la solution (si elle existe) va être une tâche laborieuse.

:)
Nightmare
Kilo-utilisateur
 
Messages: 141
Inscription: Dimanche 12 Juin 2005, 14:56
Localisation: Le perreux

Messagepar MB » Mardi 14 Février 2006, 23:53

Nightmare a écrit:Oui en effet la suite semble croissante avec Maple (je le sais depuis cet aprem d'où l'erreur dans ma conjecture).


Tu peux copier les 25 premières lignes (ou valeurs de $U_n$) ?

Sinon, pour prouver la croissance, ça doit pas être trop difficile (mais il faut étudier tous les cas par contre) ...
MB (Pas d'aide en Message Privé)
Merci d'utiliser $\LaTeX$ (voir ici) et d'éviter le style SMS pour la lisibilité des messages.
MB
Administrateur
 
Messages: 6891
Inscription: Samedi 28 Mai 2005, 13:23
Localisation: Créteil
Statut actuel: Actif et salarié | Enseignant

Messagepar Nightmare » Mercredi 15 Février 2006, 00:17

Numéro de la ligne, nombre d'éléments

Code: Tout sélectionner
1, 2
2, 2
3, 4
4, 6
5, 6
6, 8
7, 10
8, 14
9, 20
10, 26
11, 34
12, 46
13, 62
14, 78
15, 102
16, 134
17, 176
18, 226
19, 302
20, 408
21, 528
22, 678
23, 904
24, 1182
25, 1540
26, 2012
27, 2606
28, 3410
29, 4462
30, 5808
31, 7586
32, 9898
33, 12884
34, 16774
35, 21890
36, 28528
37, 37158
38, 48410


[Edit: MB] Utilisation de la balise code.
Nightmare
Kilo-utilisateur
 
Messages: 141
Inscription: Dimanche 12 Juin 2005, 14:56
Localisation: Le perreux

Messagepar linfir » Mercredi 15 Février 2006, 02:01

C'est la suite A005150. Il me semble que Conway a montré que cette suite vérifie une récurrence linéaire d'ordre 72 (de mémoire), ce qui (en théorie) fournit une réponse à ta question.
linfir
Déca-utilisateur
 
Messages: 36
Inscription: Jeudi 08 Décembre 2005, 22:25

Messagepar MB » Mercredi 15 Février 2006, 02:44

En effet, ce lien est fort instructif. Le sujet a donc déjà été bien travaillé !
Vous pouvez également regarder ici pour d'autres informations. (Je déplace ce message dans la section Mathématiques.)
MB
Administrateur
 
Messages: 6891
Inscription: Samedi 28 Mai 2005, 13:23
Localisation: Créteil
Statut actuel: Actif et salarié | Enseignant

Messagepar Nightmare » Mercredi 15 Février 2006, 19:21

Merci pour ces liens et de votre participation :)
"On se souviendra d'archiméde lorsqu'on aura oublié Eschyle , parce que les langues meurent , mais pas les idées mathématiques . "Immortalité" est un mot creux , mais un mathématicien aura plus de chance d'en jouir qu'un autre"
Nightmare
Kilo-utilisateur
 
Messages: 141
Inscription: Dimanche 12 Juin 2005, 14:56
Localisation: Le perreux

Messagepar MB » Mercredi 15 Février 2006, 19:27

De rien, par contre, j'ai toujours la cette fameuse relation de récurrence !
MB (Pas d'aide en Message Privé)
Merci d'utiliser $\LaTeX$ (voir ici) et d'éviter le style SMS pour la lisibilité des messages.
MB
Administrateur
 
Messages: 6891
Inscription: Samedi 28 Mai 2005, 13:23
Localisation: Créteil
Statut actuel: Actif et salarié | Enseignant

Messagepar Endymion » Jeudi 16 Février 2006, 19:33

Bonjour,
il me semble avoir lu pas mal de choses dans un dossier de La Recherche ou de Pour la science ily a 4 ou 5 ans. Conway a effectivement montré qu'il n'y a pas de 4 et que cette suite a une croissance exponentielle. Il y avait autre chose de surprenant. Je deteste quand le "mystique" se mêle aux maths (cf Da Vinci Code...). Voilà ce que disait l'article :

On dit qu'on passe d'un terme au suivant en faisant son "commentaire" (noté C).

En suite, Conway cherche quels sont les séquences $a_1\dots a_n $telles que
$C(a_1\dots a_n )=C(a_1\dots a_j) C(a_{j+1} \dots a_n)$ (je ne suis plus très sur...). Il les appelle atomes.
Il démontre qu'il y en a exactement 92. Premiere coïncidence, avec les atomes, qui sont au nombre de 92 si on ne tient pas compte des transuranides (ceux dans les cases en bas rajoutées;) )

Il appelle Univers la suite présentée. Il calcule ensuite la proportion de chaque atome parmis les atomes de la suite "Univers".
Seconde coïncidence, d'après lui, chaque atome a une fréquence d'apparition proche qui correspond à la proportion des vrais atomes dans le vrai univers (exemple au pif: il y a 50% d'hydrogène "en vrai" et l'atome "1" est représenté 50% des fois parmis les atomes présents dans les termes de la suite, chaque terme étant constituée de 0,1,2,et de concaténations d'atomes). Ce procédé lui permet d'appeler "22" hydrogène, etc...

Pour que ce soit vraiment bluffant, voici la dernière coïncidence, dans la nature, il me semble que les atomes peuvent naturellement se décomposer, ainsi le carbone peut devenir de l'azote (là, j'ai oublié ce qu'on m'avait appris en terminale;( ) Je ne me rappelle plus du nom de ce procédé. En fait Conway affirme que si on prend l'atome qu'il a nommé carbone, on peut l'écrire qomme la concténation de deux séquences, et que si on fait le commentaire d'une de ces séquences, on va tomber sur...l'azote!

Voilà ce que je peux réstituer de mémoire de ce que j'ai lu il y a déjà 4 ans au moins. Essayez de retrouver l'article, ça devrait être intéressant de l'examiner en détail pour voir jusqu'où va le "mysticisme" de Conway!

Dernier point, toujours d'après Conway, si on commence par 2 au lieu de 1, la suite qu'on obtiendra donnera par l'étude des proportions des séquences autocommentées des atomes qui correspondent aux "transuranides", les atomes "manquant"...mais là encore ma mémoire me fait défaut!

Quand à savoir si ce "modèle" peut avoir une quelconque application...

A bientôt!
Endymion
Utilisateur
 
Messages: 9
Inscription: Samedi 05 Novembre 2005, 13:31
Localisation: Lyon


Retourner vers Tribune des mathématiques

 


  • Articles en relation
    Réponses
    Vus
    Dernier message

Qui est en ligne

Utilisateurs parcourant ce forum: Aucun utilisateur enregistré et 1 invité