Valeurs propres, chercher l'erreur...

Aide à la résolution d'exercices ou de problèmes de niveau Supérieur.

Modérateur: gdm_aidesco

Règles du forum
Merci d'éviter le style SMS dans vos messages et de penser à utiliser la fonction Recherche avant de poster un message. Pour joindre des fichiers à vos messages, consulter ce sujet.
> Penser à utiliser le mode LaTeX (voir ici) afin de rendre vos formules plus lisibles.
> Ne poster qu'un exercice (ou problème) par sujet et indiquer son niveau précis dans le titre du message.

Valeurs propres, chercher l'erreur...

Messagepar othiprof » Jeudi 27 Septembre 2018, 14:06

Bonjour,
j'ai une matrice $M=\begin{pmatrix}    1 & -1&0&0 \\   0&0&1 & -1\\ 0&0&-1&1\\ -1&1&0&0  \end{pmatrix}$.

Je constate que les colonnes $C_1=-C_2$ et $C_3=-C_4$ mais que $C_2$ et $C_3$ sont libres. La matrice est donc de rang 2. Donc dim Ker M = 2 (théorème du rang).

Donc 0 est valeur propre de M, de multiplicité supérieure ou égale à 2.

Or, j'ai calculé le polynôme caractéristique de M et j'ai trouvé (et j'ai vérifié) : $x(x^3-2)$.

La multiplicité de la valeur propre 0 est 1 :shock: !

Qu'est-ce qui ne va pas dans mon raisonnement ?
othiprof
Déca-utilisateur
 
Messages: 43
Inscription: Vendredi 03 Avril 2015, 11:12
Statut actuel: Actif et salarié | Enseignant

Publicité

Re: Valeurs propres, chercher l'erreur...

Messagepar othiprof » Jeudi 27 Septembre 2018, 14:15

La réponse est : "Apprends à calculer un déterminant !".

Le polynôme caractéristique est $X^4$ (erreur de signe dans le cofacteur...).

Sorry...
othiprof
Déca-utilisateur
 
Messages: 43
Inscription: Vendredi 03 Avril 2015, 11:12
Statut actuel: Actif et salarié | Enseignant

Re: Valeurs propres, chercher l'erreur...

Messagepar kojak » Jeudi 27 Septembre 2018, 19:31

Bonjour,
othiprof a écrit:(erreur de signe dans le cofacteur...).

Pour calculer ce déterminant, il faut penser à faire des combinaisons linéaires en lignes ou en colonnes, de façon à sortir un facteur commun, comme ça, il est directement sous forme factorisée.
pas d'aide par MP
kojak
Modérateur
 
Messages: 10383
Inscription: Samedi 18 Novembre 2006, 19:50
Statut actuel: Actif et salarié | Enseignant

Re: Valeurs propres, chercher l'erreur...

Messagepar othiprof » Vendredi 28 Septembre 2018, 08:02

Oui, mais je suis tellement nulle à ce jeu-là ! Je ne sais pas pourquoi...

Je me lance :

$det(xI-M)=\begin{vmatrix} x- 1 & 1&0&0 \\ 0&x&-1 & 1\\0&0&x+1&-1\\1&-1&0&x \end{vmatrix}=\begin{vmatrix} x & 1&0&0 \\ x&x&0 & 1\\0&0&x&-1\\0&-1&x&x \end{vmatrix}$ (j'ai fait $C_2 + C_1 \rightarrow C_1$ et $C_4 + C_3 \rightarrow C_3$)

$=\begin{vmatrix} x & 0&x&x \\ x&x&x & 0\\0&0&x&-1\\0&-1&x&x \end{vmatrix}=x^2\begin{vmatrix} 1 & 0&1&1 \\ 1&1&1 & 0\\0&0&x&-1\\0&-1&x&x \end{vmatrix}$ (avec $L_4 + L_1 \rightarrow L_1$ et $L_3 + L_2 \rightarrow L_2$)

Ensuite, j'imagine que le but est d'avoir une ligne (ou une colonne) ne comportant qu'un seul élément non nul, mais je bloque...
othiprof
Déca-utilisateur
 
Messages: 43
Inscription: Vendredi 03 Avril 2015, 11:12
Statut actuel: Actif et salarié | Enseignant

Re: Valeurs propres, chercher l'erreur...

Messagepar kojak » Vendredi 28 Septembre 2018, 13:42

othiprof a écrit:j'ai fait $C_2 + C_1 \rightarrow C_1$ et $C_4 + C_3 \rightarrow C_3$)
ouais bof.

Il faut faire une combinaison linéaire de façon à avoir un facteur commun dans une ligne ou une colonne de façon à le sortir, et donc d'avoir des 1, ensuite par différence des 0, pour pouvoir développer et diminuer la taille du déterminant au fur et à mesure, jusqu'à avoir un déterminant 2 x 2.

Donc on remarque si on ajoute toutes les colonnes, ça donne $x$ donc on fait $C_1+C2+C_3+C4 \rightarrow C_1$ par exemple.

Cependant, je repars de ce que tu as fait, mais je ne fais que $C_2 + C_1 \rightarrow C_1$

Ca donne
$det(xI-M)=\begin{vmatrix} x & 1&0&0 \\ x&x&-1 & 1\\0&0&x+1&-1\\0&-1&0&x \end{vmatrix}$

Donc dans la première colonne, tu peux sortir un $x$ : ca donne $x\begin{vmatrix} 1 & 1&0&0 \\ 1&x&-1 & 1\\0&0&x+1&-1\\0&-1&0&x \end{vmatrix}$

Tu as déjà 2 zéros dans la première colonne, donc il serait bien d'en avoir un troisième en seconde ligne en faisant $L_2-L_1\to L_2$
tu obtiens
$x\begin{vmatrix} 1 & 1&0&0 \\0&x-1&-1&1\\0&0&x+1&-1\\0&-1&0&x \end{vmatrix}$

Tu développes par rapport à la première colonne donc il te reste
$x\begin{vmatrix}  x-1&-1 & 1\\0&x+1&-1\\-1&0&x \end{vmatrix}$

Faut donc calculer ce déterminant 3 x 3. Là on remarque que si on fait $C_2+C_3\to C_3 $ on a $0$ et $x$ qu'on pourra mettre en facteur

Ca te donne pour ce dét : $\begin{vmatrix} x-1&-1&0\\ 0& x+1&x\\-1&0&x\end{vmatrix}=x \begin{vmatrix} x-1&-1&0\\ 0& x+1&1\\-1&0&1\end{vmatrix}$

Dans la dernière colonne, il y a deux $1$ donc on va mettre un 0 en faisant $L_2-L_3\to L_2$, donc on pourra développer par rapport à la dernière colonne et il ne restera qu'un déterminant 2 x 2 qu'on pourra calculer direct.

Okay ?
pas d'aide par MP
kojak
Modérateur
 
Messages: 10383
Inscription: Samedi 18 Novembre 2006, 19:50
Statut actuel: Actif et salarié | Enseignant

Re: Valeurs propres, chercher l'erreur...

Messagepar othiprof » Vendredi 28 Septembre 2018, 13:57

:) Okay. Merci beaucoup.
othiprof
Déca-utilisateur
 
Messages: 43
Inscription: Vendredi 03 Avril 2015, 11:12
Statut actuel: Actif et salarié | Enseignant


Retourner vers Exercices et problèmes : Supérieur

 


  • Articles en relation
    Réponses
    Vus
    Dernier message

Qui est en ligne

Utilisateurs parcourant ce forum: Bing [Bot] et 3 invités