trigo sphérique

Aide à la résolution d'exercices ou de problèmes de niveau Supérieur.

Modérateur: gdm_aidesco

Règles du forum
Merci d'éviter le style SMS dans vos messages et de penser à utiliser la fonction Recherche avant de poster un message. Pour joindre des fichiers à vos messages, consulter ce sujet.
> Penser à utiliser le mode LaTeX (voir ici) afin de rendre vos formules plus lisibles.
> Ne poster qu'un exercice (ou problème) par sujet et indiquer son niveau précis dans le titre du message.

trigo sphérique

Messagepar marek16 » Dimanche 12 Janvier 2014, 17:27

Bonjour, j’aurai besoin d’aide pour un exercice de maths pour la partie B

Partie A : Sous géospace
1) Créer
- le point O (0,0,0)
- La sphère de centre o, de rayon1
- Un point libre I sur l’axe (oz)
- Le plan équatorial
- Le plan parallèle au plan équatorial passant par I
- Le parallèle correspondant (intersection sphère-plan) soit c
- Deux point A et B sur ce parallèle
- Le plan (AOB) et le grand cercle correspondant soit C

2) Créer

- Le rayon r du cercle c
- Le rayon R du cercle C
- L’angle AIB, le nommer a
- L’angle AOB, le nommer b

3) Exprimer la longueur l=AD suivant le parallèle en fonction de a et de r
L= AD suivant le grand cercle en fonction de b et R

donc la réponse : l=r*a L=R*b

Faire afficher les valeurs de l et L

4) Faire varier les points A et B et comparer l et L

Partie B
1) Démontrer que l’inégalité l > L revient à l’inégalité r*a > R*B
2) Démontrer que AB= 2r sin (a/2)=2Rsin(b/2)
3) En déduire que l’inégalité r*a > R*B revient à sin[(r/R)*(a/2)] > (r/R)sin(a/2)
4) Soit k appartient a [0,1] on pose f(x)=sin(kx)-ksin(x)
Etudier les variations de f sur [0,pi/2]
En deduire que f(x)>=0 sur [0,pi/2]
marek16
Déca-utilisateur
 
Messages: 14
Inscription: Samedi 14 Septembre 2013, 13:21
Statut actuel: Post-bac | BTS

Publicité

Retourner vers Exercices et problèmes : Supérieur

 


  • Articles en relation
    Réponses
    Vus
    Dernier message

Qui est en ligne

Utilisateurs parcourant ce forum: Ahrefs [Bot], Magpie [Crawler] et 3 invités