Inégalité polynomiale

Aide à la résolution d'exercices ou de problèmes de niveau Supérieur.

Modérateur: gdm_aidesco

Règles du forum
Merci d'éviter le style SMS dans vos messages et de penser à utiliser la fonction Recherche avant de poster un message. Pour joindre des fichiers à vos messages, consulter ce sujet.
> Penser à utiliser le mode LaTeX (voir ici) afin de rendre vos formules plus lisibles.
> Ne poster qu'un exercice (ou problème) par sujet et indiquer son niveau précis dans le titre du message.

Inégalité polynomiale

Messagepar MB » Mardi 13 Février 2018, 11:03

Voici le petit exercice suivant.

Soit $P \in \R[X]$ un polynôme scindé de degré $n \geq 1$.
1) Montrer que $(n-1)(P')^2 \geq nPP''$.
2) Étudier les cas d'égalité.


Je pense avoir une solution basée sur l'expression de $\frac{P'}{P}$ et de sa dérivée $\frac{PP''-(P')^2}{P^2}$, puis via Cauchy-Schwartz.
Peut-être qu'il y a mieux.
MB (Pas d'aide en Message Privé)
Merci d'utiliser $\LaTeX$ (voir ici) et d'éviter le style SMS pour la lisibilité des messages.
MB
Administrateur
 
Messages: 6841
Inscription: Samedi 28 Mai 2005, 13:23
Localisation: Créteil
Statut actuel: Actif et salarié | Enseignant

Publicité

Re: Inégalité polynomiale

Messagepar OG » Mardi 13 Février 2018, 17:46

Hello

J'ai regardé et ce que j'ai trouvé doit revenir au même (Cauchy-Schwarz inside), en partant
de

$$ P'= P \times \sum \frac{1}{X-a_k} $$


dérivant, etc.

O.G.
OG
Modérateur
 
Messages: 2233
Inscription: Lundi 12 Mars 2007, 11:20
Localisation: Rouen
Statut actuel: Actif et salarié | Maître de conférence

Re: Inégalité polynomiale

Messagepar MB » Mercredi 14 Février 2018, 08:57

Merci. Je suppose donc que c'est la méthode la plus naturelle.
MB (Pas d'aide en Message Privé)
Merci d'utiliser $\LaTeX$ (voir ici) et d'éviter le style SMS pour la lisibilité des messages.
MB
Administrateur
 
Messages: 6841
Inscription: Samedi 28 Mai 2005, 13:23
Localisation: Créteil
Statut actuel: Actif et salarié | Enseignant

Re: Inégalité polynomiale

Messagepar OG » Mercredi 14 Février 2018, 12:27

J'avoue que je ne sais pas si c'est la méthode la plus naturelle. Je ne connaissais pas cet exo (qui doit être classique) et le côté "scindé" pousse à utiliser $P'/P$.

O.G.
OG
Modérateur
 
Messages: 2233
Inscription: Lundi 12 Mars 2007, 11:20
Localisation: Rouen
Statut actuel: Actif et salarié | Maître de conférence

Re: Inégalité polynomiale

Messagepar MB » Mercredi 14 Février 2018, 18:55

Je ne sais pas si il est classique, je ne l'ai même pas trouvé dans les bouquins dont je dispose. D'ailleurs si quelqu'un a une référence dans laquelle il figure ...
MB (Pas d'aide en Message Privé)
Merci d'utiliser $\LaTeX$ (voir ici) et d'éviter le style SMS pour la lisibilité des messages.
MB
Administrateur
 
Messages: 6841
Inscription: Samedi 28 Mai 2005, 13:23
Localisation: Créteil
Statut actuel: Actif et salarié | Enseignant

Re: Inégalité polynomiale

Messagepar guiguiche » Jeudi 15 Février 2018, 08:51

En lien avec les polynômes de Hermite comme dans ce sujet : ESSEC 2002 S.
Fichiers joints
essec_2002_S_1.pdf
(73.37 Kio) Téléchargé 17 fois
Pas d'aide par MP : les questions sont publiques, les réponses aussi.
Tu as apprécié l'aide qui t'a été fournie ? Alors n'hésite pas à rendre la pareille à quelqu'un d'autre.
Un peu d'autopromotion.
guiguiche
Modérateur
 
Messages: 8047
Inscription: Vendredi 06 Janvier 2006, 15:32
Localisation: Le Mans
Statut actuel: Actif et salarié | Enseignant


Retourner vers Exercices et problèmes : Supérieur

 


  • Articles en relation
    Réponses
    Vus
    Dernier message

Qui est en ligne

Utilisateurs parcourant ce forum: Ahrefs [Bot], Bing [Bot], Google [Bot] et 2 invités