DM terminale ES compliqué

Aide à la résolution d'exercices ou de problèmes de niveau Lycée.

Modérateur: gdm_aidesco

Règles du forum
Merci d'éviter le style SMS dans vos messages et de penser à utiliser la fonction Recherche avant de poster un message. Pour joindre des fichiers à vos messages, consulter ce sujet.
> Penser à utiliser le mode LaTeX (voir ici) afin de rendre vos formules plus lisibles.
> Ne poster qu'un exercice (ou problème) par sujet et indiquer son niveau précis dans le titre du message.

DM terminale ES compliqué

Messagepar nicolas59750 » Dimanche 26 Novembre 2006, 10:46

bonjour a tous, j'ai un gros problème avec mon DM ! je suis deçu depuis hier à 11h et je comprend pas ... voici l'énoncé.
J'ai juste réussi la question 1) et 2)a)

PARTIE B :

On considère la fonction f définie sur $]1; + \infty[$ par $f(x) = x - \dfrac{e}{\ln(x)}$

1)a) Calculer les limites de $f$ en $1$ et en $+ \infty$.
b) Etudier les variations de $f$ et dressez son tableau de variation sur
$]1 ; + \infty[$

2)a) Montre que la droite $(D)$ d'équation $y=x$ est asymptote à $(C)$.
Etudiez la position de $(C)$ par rapport à $(D)$.

Soient $M$ un point de $(C)$ et $N$ un point de $(D)$ de même abcisse $x$.

Déterminez les valeurs de $x$ pour lesquels la distance $MN$ est inférieur à $5$ millimètres

b) $(C)$ admet une deuxième asymptote, donnez en une équation.

3)Donnez une équation de la tangente $(T)$ à $(C)$ au point d'abcisse $e$.

4)Représentation graphique (Si j'ai les équation j'y arriverai)

5) Comment peut-on déduire la représentation graphique de $|f|$ de celle de $f$ ? Tracez la.)


Merci d'avance[/b]

[EDIT : Rebouxo, merci d'utiliser LaTeX, pour les formules de maths]
nicolas59750
Déca-utilisateur
 
Messages: 33
Inscription: Dimanche 26 Novembre 2006, 10:43

Publicité

Messagepar rebouxo » Dimanche 26 Novembre 2006, 10:54

Quelles sont les réponses aux premières questions ?

Olivier
A line is a point that went for a walk. Paul Klee
Par solidarité, pas de MP
rebouxo
Modérateur
 
Messages: 6909
Inscription: Mercredi 15 Février 2006, 13:18
Localisation: le havre
Statut actuel: Actif et salarié | Enseignant

Messagepar nicolas59750 » Dimanche 26 Novembre 2006, 11:07

1) lim f(x) $=$ - $\infty$
x $\rightarrow$ 1

lim f(x) = + $\infty$
x $\rightarrow$ + $\infty$

2)lim f(x) = + $\infty$
x=> + $\infty$

$$[g(x) = e-ln(x)]$$



lim g(x) = 0
x=> + $\infty$

donc $y = e/lnx$ est une asymptote oblique.
nicolas59750
Déca-utilisateur
 
Messages: 33
Inscription: Dimanche 26 Novembre 2006, 10:43

Messagepar kilébo » Dimanche 26 Novembre 2006, 11:12

Pour le 2) il y a un problème car ton asymptote ($\dfrac{e}{\ln(x)}$) n'est pas une droite...
kilébo
Téra-utilisateur
 
Messages: 1059
Inscription: Samedi 22 Avril 2006, 11:08
Localisation: Région Parisienne
Statut actuel: Actif et salarié

Messagepar nicolas59750 » Dimanche 26 Novembre 2006, 11:13

Je me suis trompé, c'est $y=x$ ! c'est bien ça ?
nicolas59750
Déca-utilisateur
 
Messages: 33
Inscription: Dimanche 26 Novembre 2006, 10:43

Messagepar rebouxo » Dimanche 26 Novembre 2006, 11:17

nicolas59750 a écrit:1) lim f(x) $=$ - $\infty$
x $\rightarrow$ 1

lim f(x) = + $\infty$
x $\rightarrow$ + $\infty$
[\quote]
Oui. Et la question 1b. As-tu trouvé les variations de $f$ ?
nicolas59750 a écrit:2)lim f(x) = + $\infty$
x=> + $\infty$

Déjà fait.
nicolas59750 a écrit:

$$[g(x) = e-ln(x)]$$



lim g(x) = 0
x=> + $\infty$

donc $y = e/lnx$ est une asymptote oblique.

C'est la question 2.a ?
Regarde la question et ta conclusion ? Il y a un problème non ?
Ta recherche de la limite de la fonction $g$ est bonne, mais pourquoi cette
fonction ?

Que veux-dire étudier la position de la courbe par rapport à la droite ?

Olivier
Dernière édition par rebouxo le Dimanche 26 Novembre 2006, 11:18, édité 1 fois.
rebouxo
Modérateur
 
Messages: 6909
Inscription: Mercredi 15 Février 2006, 13:18
Localisation: le havre
Statut actuel: Actif et salarié | Enseignant

Messagepar kilébo » Dimanche 26 Novembre 2006, 11:17

Oui, c'est $y=x$ mais ta justification n'est pas la bonne. Quelle est la définition d'une asymptote ?
kilébo
Téra-utilisateur
 
Messages: 1059
Inscription: Samedi 22 Avril 2006, 11:08
Localisation: Région Parisienne
Statut actuel: Actif et salarié

Messagepar nicolas59750 » Dimanche 26 Novembre 2006, 11:22

Pour la variation de $f$, c'est toujours positif.
Quant à la fonction g(x) je me suis trompé, c'est $e/ln(x)$

pour la position de $(c)$ par rapport à $(d)$ ,e n'arrive pas.
nicolas59750
Déca-utilisateur
 
Messages: 33
Inscription: Dimanche 26 Novembre 2006, 10:43

Messagepar nicolas59750 » Dimanche 26 Novembre 2006, 11:24

Regarde la question et ta conclusion ? Il y a un problème non ?

Je me suis corrigé, c'est $y=x$ !
nicolas59750
Déca-utilisateur
 
Messages: 33
Inscription: Dimanche 26 Novembre 2006, 10:43

Messagepar nicolas59750 » Dimanche 26 Novembre 2006, 11:27

Que veux-dire étudier la position de la courbe par rapport à la droite ?
Savoir si l'asymptote est au dessus ou en dessous non ?
il faut faire $f(x)-y$ donc $f(x)-(x)$ $=$ $-e/ln(x)$ et le je sais pu quoi faire !
nicolas59750
Déca-utilisateur
 
Messages: 33
Inscription: Dimanche 26 Novembre 2006, 10:43

Messagepar nicolas59750 » Dimanche 26 Novembre 2006, 11:40

:roll:
nicolas59750
Déca-utilisateur
 
Messages: 33
Inscription: Dimanche 26 Novembre 2006, 10:43

Messagepar guiguiche » Dimanche 26 Novembre 2006, 11:43

Dessus/dessous : +/-
Pas d'aide par MP : les questions sont publiques, les réponses aussi.
Tu as apprécié l'aide qui t'a été fournie ? Alors n'hésite pas à rendre la pareille à quelqu'un d'autre.
Un peu d'autopromotion.
guiguiche
Modérateur
 
Messages: 8062
Inscription: Vendredi 06 Janvier 2006, 15:32
Localisation: Le Mans
Statut actuel: Actif et salarié | Enseignant

Messagepar nicolas59750 » Dimanche 26 Novembre 2006, 11:48

Dessus/dessous : +/-

Il faut faire les limites alors?
$lim (-e/lnx)$ = $-\infty$
$x  \rightarrow 0+ $

$lim (-e/lnx)$ = $+\infty$
$x  \rightarrow 0- $

C'est ça ?
nicolas59750
Déca-utilisateur
 
Messages: 33
Inscription: Dimanche 26 Novembre 2006, 10:43

Messagepar guiguiche » Dimanche 26 Novembre 2006, 11:52

Non, pas les limites.
Pas d'aide par MP : les questions sont publiques, les réponses aussi.
Tu as apprécié l'aide qui t'a été fournie ? Alors n'hésite pas à rendre la pareille à quelqu'un d'autre.
Un peu d'autopromotion.
guiguiche
Modérateur
 
Messages: 8062
Inscription: Vendredi 06 Janvier 2006, 15:32
Localisation: Le Mans
Statut actuel: Actif et salarié | Enseignant

Messagepar nicolas59750 » Dimanche 26 Novembre 2006, 11:54

guiguiche a écrit:Non, pas les limites.
je vois pas comment je dois faire pour montrer que la droite $y=x$ est au dessus de $f(x)$ ...
nicolas59750
Déca-utilisateur
 
Messages: 33
Inscription: Dimanche 26 Novembre 2006, 10:43

Messagepar guiguiche » Dimanche 26 Novembre 2006, 11:56

Je précise :

- Une limite est une propriété locale : on a une information dans un "petit" secteur de la fonction ou de la courbe (des valeurs de x bien "délimitées").

- On te demande une propriété globale : on veut une information valable pour tous les x du domaine de définition.
Pas d'aide par MP : les questions sont publiques, les réponses aussi.
Tu as apprécié l'aide qui t'a été fournie ? Alors n'hésite pas à rendre la pareille à quelqu'un d'autre.
Un peu d'autopromotion.
guiguiche
Modérateur
 
Messages: 8062
Inscription: Vendredi 06 Janvier 2006, 15:32
Localisation: Le Mans
Statut actuel: Actif et salarié | Enseignant

Messagepar nicolas59750 » Dimanche 26 Novembre 2006, 12:02

guiguiche a écrit:Je précise :

- Une limite est une propriété locale : on a une information dans un "petit" secteur de la fonction ou de la courbe (des valeurs de x bien "délimitées").

- On te demande une propriété globale : on veut une information valable pour tous les x du domaine de définition.


$f(x)-y <0$
$f(x)<y$

donc y est au dessus de $f(x)$

non ?
nicolas59750
Déca-utilisateur
 
Messages: 33
Inscription: Dimanche 26 Novembre 2006, 10:43

Messagepar guiguiche » Dimanche 26 Novembre 2006, 12:03

nicolas59750 a écrit:$f(x)-y <0$
$f(x)<y$

donc y est au dessus de $f(x)$

non ?

Pour toute valeur de x ?
De plus, c'est mal rédigé.
Pas d'aide par MP : les questions sont publiques, les réponses aussi.
Tu as apprécié l'aide qui t'a été fournie ? Alors n'hésite pas à rendre la pareille à quelqu'un d'autre.
Un peu d'autopromotion.
guiguiche
Modérateur
 
Messages: 8062
Inscription: Vendredi 06 Janvier 2006, 15:32
Localisation: Le Mans
Statut actuel: Actif et salarié | Enseignant

Messagepar nicolas59750 » Dimanche 26 Novembre 2006, 12:08

guiguiche a écrit:
nicolas59750 a écrit:$f(x)-y <0$
$f(x)<y$

donc y est au dessus de $f(x)$

non ?

Pour toute valeur de x ?
De plus, c'est mal rédigé.


oui pour toute valeur de x (sauf pour 1 puisque c'est une valeur interdite mais l'ensemble de définition exclu le 1).
il faut dire :
l'asymptote $y=x$ est au dessus de $f(x$ pour tout $x>1$...
nicolas59750
Déca-utilisateur
 
Messages: 33
Inscription: Dimanche 26 Novembre 2006, 10:43

Messagepar nicolas59750 » Dimanche 26 Novembre 2006, 12:14

On peut m'expliquer pour la suite avec les points M&N ... :oops: :?
nicolas59750
Déca-utilisateur
 
Messages: 33
Inscription: Dimanche 26 Novembre 2006, 10:43

Suivante

Retourner vers Exercices et problèmes : Lycée

 


  • Articles en relation
    Réponses
    Vus
    Dernier message

Qui est en ligne

Utilisateurs parcourant ce forum: Bing [Bot] et 5 invités