[TS] Démontrer par récurrence

Aide à la résolution d'exercices ou de problèmes de niveau Lycée.

Modérateur: gdm_aidesco

Règles du forum
Merci d'éviter le style SMS dans vos messages et de penser à utiliser la fonction Recherche avant de poster un message. Pour joindre des fichiers à vos messages, consulter ce sujet.
> Penser à utiliser le mode LaTeX (voir ici) afin de rendre vos formules plus lisibles.
> Ne poster qu'un exercice (ou problème) par sujet et indiquer son niveau précis dans le titre du message.

[TS] Démontrer par récurrence

Messagepar Lexot » Samedi 09 Décembre 2006, 05:16

Bonjour

C'est une partie d'un devoir maison

f est la fonction définie sur R par f(x) = ($x^2  + x+ 1$) $e^x$
On note $f^{(1)}, f^{(2)},\cdots, f^{(n)}$ ses dérivées successives. On dit que $^{f(n)}$ est la dérivée « n-ième » de $f$. De même $f^{(1)}$ est la dérivée notée habituellement $f '$

1.
a) Calculez $f^{(1)}(x)$
b) Démontrez par récurrence que $f^{(n)}(x)$ s’écrit sous la forme $( x^2 + a_{n}x +b_{n})e^x$$a_{n}$ et $b_{n}$ sont des entiers naturels.

J'ai calculé $f^{(1)}(x), f^{(2)}(x), f^{(3)}(x)$, mais je ne comprends pas le 1b) Démontrez par récurrence

$f^{(1)}(x) = (x^2 + 3x+ 2) e^x$

$f^{(2)}(x) = (x^2  + 5x+ 5) e^x$

$f^{(3)}(x) = (x^2  + 7x+ 10) e^x$

Merci pour votre aide

Cordialement

[EDIT: kilébo]Mise en forme $\LaTeX$.
Lexot
Déca-utilisateur
 
Messages: 14
Inscription: Samedi 18 Novembre 2006, 19:36

Publicité

Messagepar kilébo » Samedi 09 Décembre 2006, 07:14

Quel est ton soucis ? Les démonstrations par récurrence en général ? Ou ce cas particulier ?

Dans tous les cas, il s'agit, ici, de montrer que $f^{(1)}$ s'écrit sous la forme indiquée puis de démontrer que si $f^{(n)}$ s'écrit aussi sous cette forme alors $f^{(n+1)}$ aussi.

Ayant démontré cela, comme $f^{(1)}$ s'écrit $(x^2 + a_1 x + b_1)e^x$ alors $f^{(2)} = (x^2 + a_2 x + b_2)e^x$ mais alors $f^{(3)} = (x^2 + a_3 x + b_3)e^x$, puis $f^{(4)} = (x^2 + a_4 x + b_4)e^x$ etc...

C'est ça, le principe d'une démonstration par récurrence.
kilébo
Téra-utilisateur
 
Messages: 1059
Inscription: Samedi 22 Avril 2006, 11:08
Localisation: Région Parisienne
Statut actuel: Actif et salarié


Retourner vers Exercices et problèmes : Lycée

 


  • Articles en relation
    Réponses
    Vus
    Dernier message

Qui est en ligne

Utilisateurs parcourant ce forum: Aucun utilisateur enregistré et 2 invités